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Photoproduction of single neutral pseudoscalar mesons was investigated at the CB–
ELSA experiment in Bonn. The main field of interest is the photoproduction of
baryonic resonances in the intermediate state. The CB–ELSA experiment covers

a rather large percentage of the solid angle, rendering it ideally suited for the
observation of angular distributions. Data was taken for incident photon energies
between 0.3 and 3.0GeV, thus extending the region already investigated by other

experiments as well in angular as in energy range.

1. Introduction

Photoproduction is a sensitive tool to study the properties of baryon res-

onances. Most of the properties of N and ∆ states have been obtained in

πN scattering. In γp, resonant states are excited in electromagnetic inter-

action, while they decay via strong interaction. Thus, we have access to

hadronic and electromagnetic couplings of the resonances.

The often discussed problem of missing resonances (e. g. 1,2) is an important

topic at CB–ELSA. The investigation of photoproduction reactions yields

a great discovery potential for some of these missing states. We are not

limited to the channel πN, but have access to various final states, some of

which are selective due to isospin conservation. The photoproduction of

η mesons, e. g., selects contributions of N∗ resonances in the intermediate

state.
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2. Experiment

The data stem from the first experimental phase of the CB–ELSA exper-

iment. An unpolarized photon beam was produced via scattering of a

1.4GeV (or 3.2GeV, respectively) electron beam delivered by the Electron

Accelerator ELSA, having the 1/Eγ distribution typical for bremsstrahlung.

The photons are then energy tagged by detecting the corresponding elec-

trons in a magnetic dipole spectrometer. These photons hit a liquid hy-

drogen target in the center of the CB–ELSA detector, an electromagnetic

calorimeter consisting of 1380CsI crystals. If a reaction occurs, photons

originating from the decay of produced neutral mesons are detected with

high angular and energy resolution. The proton is detected as well and iden-

tified by an inner detector consisting of three layers of scintillating fibers.

For the flux determination, a total absorption photon detector was placed

further downstream.

3. Results

Results on γp → pπ0 and γp → pη were obtained by detection of two

photons for π0
→ 2γ and η → 2γ and by detection of six photons for

η → 3π0
→ 6γ. The proton was either detected in the CB–ELSA detector

and identified by the inner detector or, for low–energetic protons, taken

from the hit in the inner detector alone.

A kinematic fit was applied to the measured values, with known event

energy from the tagger and known four–vectors for the decay photons, while

the proton was left unconstrained. Confidence–level cuts were applied on

> 10−4 for the two–photon, > 10−2 for the six–photon case.
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Figure 1. Invariant mass of two pho-

tons in three–particle final states, loga-

rithmic scale, (a) 2γ mass, (b) 6γ mass,
linear scale

A spectrum of invariant masses can be

seen in Fig. 1. The two photon invariant

mass is shown on a logarithmic scale.

Insets (a) and (b) show the two– and

the six–photon invariant mass in the η

region. The background is of the order

of magnitude of 10−3 underneath the π0

and 10−2 beneath the η.

3.1. γp → pπ0

The angular distributions were calcu-

lated using the fitted data. In order to correct for efficiencies, a GEANT–
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based simulation of the detector system was performed. The normalization

was done with the help of the SAID analysis: For photon energies up to

1.3GeV, the angular distributions were fitted to match the SAID predic-

tion by applying a χ2 fit, giving one factor for each energy bin. Above

that energy, the flux was obtained by scaling the experimentally obtained

photon flux with one constant scaling factor to get an agreement between

SAID and our data at photon energies up to about 2GeV.
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Figure 2. Differential cross sections dσ/dΩ of γp → pπ0 (Eγ binned), ■: CB–ELSA,
solid line: PWA result

The distributions in Fig. 23 match well with the predicted values from the

SAID analysis, reflecting the good understanding of our detector response.

The data can be described well in a partial wave analysis4. The result is

shown together with the experimental results.

3.2. γp → pη

The photoproduction of η mesons was investigated in its two different neu-

tral, most common decay channels, 2γ and 3π0. The obtained cross sections
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match with a branching ratio of Γη→3π0/Γη→2γ = 0.825 ± 0.001 ± 0.005,

which is in excellent agreement with the values stated by the PDG5. This

again reflects the good description of the detector and enables us to add

the statistics from both channels.
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Figure 3. Differential cross section dσ/dΩ for γp→

pη (Eγ binned), ■: CB–ELSA, other symbols: data
from TAPS, GRAAL, CLAS, solid line: PWA result

The data shown in Fig. 37 is

in excellent agreement with

previously published data

from TAPS8, GRAAL9,

and CLAS10. It extends

the known region as well in

photon energies as in angu-

lar range.

The resulting fit from a par-

tial wave analysis is shown

as well. Evidence is found

for two new resonances,

D15(2070) and P13(2200).

A symmetry observed in

the results of this par-

tial wave analysis is that

the resonances S11(1535),

P13(1720), and D15(2070)

couple strongly to Nη. In a

harmonic–oscillator model,

one could assign L = 1, 2, 3 and S = 1/2 to these states, coupling to

J = L−S, giving the measured quantum numbers JP = 1/2−, 3/2+, 5/2−.
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