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Light-baryon resonances with u,d, and s quarks only can be classified using the non-relativistic
quark model. When we assign to baryon resonances with total angular momenta J intrinsic orbital
angular momenta L and spin S we make the following observations: plotting the squared masses
of the light-baryon resonances against these intrinsic orbital angular momenta L, ∆∗’s with even
and odd parity can be described by the same Regge trajectory. For a given L, nucleon resonances
with spin S=3/2 are approximately degenerate in mass with ∆ resonances of same total orbital
momentum L. To which total angular momentum L and S couple has no significant impact on the
baryon mass. Nucleons with spin 1/2 are shifted in mass; the shift is - in units of squared masses
- proportional to the component in the wave function which is antisymmetric in spin and flavor.
Sequential resonances in the same partial wave are separated in mass square by the same spacing
as observed in orbital angular momentum excitations. Based on these observations, a new baryon
mass formula is proposed which reproduces nearly all known baryon masses.

PACS numbers: PACS: 14.20

Phenomenological analyses of transition energies be-
tween energy levels of bound systems can provide deep
insight into the underlying dynamics. The Balmer for-
mula demonstrated that the interpretation of the hydro-
gen atom must be simple; the formula was given long
before Bohr derived the famous model which bares his
name. Our understanding of nucleon-nucleon interac-
tions was boosted by the discovery that the magic num-
bers in nuclear physics can be understood in terms of a
nuclear shell structure in the presence of strong spin-orbit
forces. And the analogy of the charmonium states with
those of positronium atoms provided not only evidence
for the existence of a new flavor but was also the final
proof for the reality of quarks. In this letter we propose
a new mass formula for light baryon resonances which
reproduces 81 of the 82 masses of baryons with known
spin and parity given by the Particle Data Group [1].
We assume that the baryon mass spectrum is due to the
dynamics of three constituent quarks and that a confine-
ment interaction gives rise to linear Regge trajectories
[2]. The study aims to identify the dominant residual
interactions between the constituent quarks. The mass
formula reads [3]:

M2 = M2
∆ +

ns

3
· M2

s + a (L + N) − si · Isym (1)

where M2
s =

(

M2
Ω − M2

∆

)

si =
(

M2
∆ − M2

N

)

.

ns is number of strange quarks in the baryon. Mostly,
baryon masses are assumed to increase linearly with the
number of strange quarks. We use in (1) a quadratic
dependence for sake of simplicity. The model has no pa-
rameter to account for the Λ−Σ mass difference [4]. L is
the total intrinsic orbital angular momentum, which we
have to assign to each baryon resonance. N is the radial
excitation quantum number; L+2N gives the harmonic-
oscillator band. MN, M∆, MΩ are input parameters taken

from PDG. a = 1.142/GeV2 is the Regge slope deter-
mined from the series of light (isoscalar and isovector)
mesons with quantum numbers JPC = 1−−, 2++, 3−−,
4++, 5−−, 6++. Isym is the fraction of the wave function
(normalized to the nucleon wave function) antisymmetric
in spin and flavor. It depends on the SU(6) flavor wave
function

Isym = 1.0 for S=1/2 and for octet baryons in 56-plets;

Isym = 0.5 for S=1/2 and for octet baryons in 70-plets;

Isym = 1.5 for S=1/2 and for singlet baryons;

Isym = 0 otherwise.

For a quantitative comparison of our mass formula (1)
with the experimental masses of the light-baryon reso-
nances, central values and their uncertainties need to be
defined. As mass value of a resonance we take - when
given - the central value of the interval suggested by the
Particle Data Group. We do not take experimental un-
certainties of the mass determination into account, since
they are only given for well established resonances. In-
stead, we use a simple estimate based on contributions
from the hadronic width and a model error. It is well
known that hadronic effects like opening thresholds, vir-
tual decays and mixing with other states may result in
mass shifts. To account for these effects we allow for an
error of one quarter of the hadronic width of a resonance.
A constant model error of 30 MeV is added quadratically
to give the total error σM. Since the measured widths
show a wide spread and are often rather inaccurate, we
use Γ = Q/4 as width estimate where Q is the largest
kinetic energy accessible in hadronic decays of the reso-
nance. Our estimated uncertainties vary (for N and ∆
resonances) from 40 MeV at 1500 MeV to 120 MeV at 3
GeV. Note that experimental uncertainties in the mass
determination are often in the same range.

According to eq. (1), the squared baryon masses de-
pend linearly on the intrinsic orbital angular momentum
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L. Measured is of course only the total angular momen-
tum J. We identify multiplets with intrinsic spin 3/2 us-
ing the following criteria: first, we identify ’stretched’
states with J=L+S; L=0,1,..,6 and S=3/2, i.e. resonances
with quantum numbers JP = 3/2+, 5/2−, 7/2+, 9/2−,
11/2+, 13/2−, 15/2+. These are shown in Table I in the
last column. Omitted are the decuplet ground states
(L=0) which also fall into this category.

In our eq. (1) we do not account for spin-orbit forces,
assuming they are small or vanishing. Therefore, we
collect all resonances of a spin 3/2 multiplet from a
mass window (here we chose ±

√
2σM) around the same

stretched state requiring the same parity. In the non-
relativistic quark model we expect single resonances for
L=0 (the ground states), triplets for L=1 and quartets
for higher L. The multiplet structure is clearly visible in
Table I, even though the multiplets are not complete,
supporting our assumption in eq. (1) of small or vanish-
ing spin-orbit forces.

TABLE I: Baryon resonances assigned to S=3/2 multiplets.
Baryon masses depend only weakly on the orientation of the
spin relative to the orbital angular momentum: spin-orbit
forces are small (~L · ~S ∼ 0). Missing states are marked by a -
sign.

L J=L-3/2 J=L-1/2 J=L+1/2 J=L+3/2

1 N1/2−(1650) N3/2− (1700) N5/2−(1675)

1 ∆1/2− (1900) ∆3/2− (1940) ∆5/2− (1930)

1 Λ1/2− (1800) - Λ5/2− (1830)

1 Σ1/2− (1750) - Σ5/2− (1775)

2 - N3/2+(1900) N5/2+ (2000) N7/2+(1990)

2 ∆1/2+ (1910) ∆3/2+(1920) ∆5/2+ (1905) ∆7/2+ (1950)

2 - - Λ5/2+ (2110) Λ7/2+ (2020)

2 - Σ3/2+ (2080) Σ5/2+ (2070) Σ7/2+ (2030)

3 - N5/2−(2200) N7/2− (2190) N9/2−(2250)

3 - ∆5/2− (2350) - ∆9/2− (2400)

4 - ∆7/2+(2390) ∆9/2+ (2300) ∆11/2+ (2420)

5 - - - ∆13/2− (2750)

6 - - - ∆15/2+ (2950)

Also quantitatively the comparison of our mass for-
mula (1) with the light-baryon resonances with spin as-
signment S=3/2 (see Table I) is doing well: We get a
χ2 = 23.6 for 31 data points.

We now turn to a discussion of spin 1/2 resonances.
The lowest-mass spin-1/2 states have intrinsic L=0, pos-
itive parity and belong to an octet in the 56-plet repre-
sentation. We now search for doublets of nearly mass-
degenerate states with J=L±1/2. Doublets are observed
for L=1,2, and 3; for larger L only one state with L+1/2
is known. The spin 1/2 states are collected in Fig. 1,

grouped according to their SU(6) classification. The pos-
itive parity octet states have a shift in squared mass rela-
tive to the Regge trajectory of 0.657± 0.035 GeV2. This
value is compatible with the ∆3/2+(1232)-N mass square
difference (0.636 GeV2). The negative-parity octet res-
onances undergo a mass shift of (0.311 ± 0.023) GeV2,
consistent with 1/2 of the ∆3/2+(1232)-N mass square
difference. We have also included the N5/2−(2200) and
N7/2−(2190) from Table I here, since their intrinsic spin
assignment (S=3/2 or 1/2) is ambiguous.

The Λ1/2−(1405) and Λ3/2−(1520) with their low
masses are assigned to the SU(6) singlet system; the two
states Λ1/2−(1670) and Λ3/2−(1690) form then the spin
doublet of the 70-plet octet, and the Λ1/2−(1800) and
Λ5/2−(1830) an incomplete spin-triplet (also belonging
to a 70-plet). The Λ7/2−(2100) is the lowest Λ resonance
with L=3; we assign it to the SU(6) singlet system be-
cause of its mass. The assignment is thus ad hoc as long
as its octet partner (predicted by (1) at a mass of 2318
MeV) has not been found. These three singlet resonances
have a large mass shift down from the Regge trajectory
of (0.942± 0.059) GeV2 or 3/2 times the ∆3/2+(1232)-N
mass difference.

There is one doublet of negative-parity ∆ states, the
∆1/2−(1620) and ∆7/2−(1700). In addition we assign
the ∆7/2−(2200) to the lowest-mass state with L=3 and
S=1/2. It could also form a spin-3/2 quartet with the two
other resonances ∆5/2−(2350) and ∆9/2−(2400). How-

ever, the ∆7/2−(2200) does not fall into the ±
√

2σM cor-
ridor, hence we do not accept this as spin 3/2 state. The
mean mass shift of the three remaining negative par-
ity decuplet ∆ states relative to the Regge trajectory
is (0.074 ± 0.103) GeV2 and compatible with zero.

Summarizing the S=1/2 states, we observe a reason-
able agreement with the experimental masses with eq.
(1) resulting in a χ2 contribution of 43.3 for 29 d.o.f. Es-
pecially the description of the deviation of (1) from the
Regge trajectory by the additional symmetry term (last
term in (1)) is nicely confirmed.

In Eq. (1), radial excitations are supposed to have the
same mass spacing (per unit of excitation number) as or-
bital angular momentum excitations. In Table II we list
resonances belonging to one partial wave, and their mass
square differences. The differences are of the order of 1.1
GeV2, not incompatible with the spacing per unit of L.
The 14 new data points contribute δχ2=17.8. This obser-
vation is the basis of the L+N dependence in (1). Table II
may contain some positive-parity resonances with L=2,
S=3/2 with ambigous assignments.

So far, we have included all baryon resonances of
known spin-parity except a few special cases. The
Σ3/2−(1580) has two stars in the PDG notation, but it
is very low in mass and does possibly not exist [5]. We
disregard this resonance. The ∆5/2+(2000) has two mass
entries, at 1752 MeV and 2200 MeV, respectively. Us-
ing the higher mass value, it can be identified as radial
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FIG. 1: Mass square shift (in GeV2) of spin-1/2 baryons w.r.t. the Regge trajectory M2 = M2

∆ + ns/3 ·M2
s + a (L + N) defined

by baryons with S=3/2 (hyperfine splitting). The mass shifts scale as 1 : 1/2 : 3/2 : 0 times M2

∆ − M2

N as we proposed in mass
formula (1).

excitation of the ∆5/2+(1905) but this is clearly a spec-
ulation. There remain three states to be discussed, the
∆1/2+(1750) with one *, the Σ1/2+(1660) (***) and the
Σ1/2+(1770) (*). Radial excitations of the Σ3/2+(1385)
are not necessarily in a 56-plet (then they have 3/2+);
they can also fall into a 70-plet. In this case they have
spin 1/2. The difference in squared mass between the
Σ1/2+(1770) and the Σ3/2+(1385) is 1.21 GeV2, compat-
ible with the other values in Table II. The ∆1/2+(1750)
could be an analogous state; in this case the mass square
difference is uncomfortably large, 1.54 GeV2; however
the ∆1/2+(1750) is a one * resonance only. Likewise, the
Σ1/2+(1660) could be an octet radial excitation belong-
ing to the SU(6) 70-plet. The mass difference to the first
radial excitation in the 56-plet, possibly the Σ(1560), is
0.322 GeV2, nearly identical to the other splittings be-
tween resonances belonging to the 56 or 70-plet. So, while
the resonances discussed in this last paragraph cannot
be used to validate the mass formula (1), they are nev-
ertheless consistent with it when appropriate quantum
numbers are assigned. These four states and the two re-
maining decuplet ground states (the ∆ and Ω masses are
used as input parameters) contribute δχ2=7.1.

In summary we compared 81 resonances to their
masses according to the values summarized by the Par-
ticle Data Group and obtain a χ2 = 91.7 for 78 degrees
of freedom.

We now discuss consequences for our understanding of
the baryon mass spectrum. The mass formula (1) con-
tains the orbital angular momentum as decisive quantity
for baryon masses. The orbital angular momentum is the
sum ~L = ~lρ + ~lλ of two orbital angular momenta associ-
ated with the two generalized coordinates of the three-
particle system. All resonances are compatible with ei-
ther L = lρ or L = lλ. A dynamical reason for this
selection rule is not known; the question is related to the
missing resonance problem.

Baryon resonances are classified according to the non-
relativistic quark model. Doublets and quartets are
clearly identified in the mass spectrum. The mass for-
mula (1) does not include spin-orbit interactions. The
proton spin puzzle underlines that our understanding of
the dynamical role of the quark spin in baryons is not
sufficient to exclude the possibility that spin-orbit inter-
actions play no or little role in the baryon mass spectrum.

The second point resulting from this analysis is the
energy gap of radial excitations. In the harmonic oscilla-
tor approximation, the first radial excitations are found
in the second excitation band; the anharmonicity due to
the confinement potential - supposed to be linear - shifts
its mass down but not low enough to hit the mass of the
Roper resonance at 1440 MeV or the ∆3/2+(1600). Ta-
ble II shows a large number of recurrencies (17) which
all give a small mass shift per increase in radial excita-
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TABLE II: Excitations of baryon resonances having the same
quantum numbers. The mean value per excitation is (1.081±
0.036) GeV2, to be compared to the 1.142 GeV2 from the fit
to the meson Regge trajectory.

Baryon δM2(GeV2) Baryon δM2(GeV2)

N1/2+(939) ∆3/2+ (1232)

N1/2+ (1440) 1(1.18 ± 0.11) ∆3/2+ (1600) 1(1.04 ± 0.15)

N1/2+ (1710) 2(1.02 ± 0.18) ∆3/2+ (1920) 2(1.08 ± 0.24)

N1/2+ (2100) 3(1.18 ± 0.29)

Λ1/2+ (1115) Σ1/2+ (1193)

Λ1/2+ (1600) 1(1.24 ± 0.10) Σ1/2+?(1560) 1(1.04 ± 0.10)

Λ1/2+ (1810) 2(0.98 ± 0.15) Σ1/2+ (1880) 2(1.06 ± 0.11)

N1/2− (1535) N3/2− (1520)

N1/2− (2090) 2(1.01 ± 0.31) N3/2− (2080) 2(1.01 ± 0.31)

∆1/2− (1620) ∆3/2− (1700)

∆1/2− (1900) 1(0.99 ± 0.24) ∆3/2− (1940) 1(0.87 ± 0.24)

∆1/2− (2150) 2(1.00 ± 0.34)

Λ3/2− (1670)

Λ3/2− (2325) 2(1.31 ± 0.27)

Σ1/2− (1620) Σ3/2− (1670)

Σ1/2− (2000) 1(1.37 ± 0.18) Σ3/2− (1940) 1(0.97 ± 0.17)

tion number. Bijker et al. [6] have used an algebraic ap-
proach to describe baryon resonances. For them, the low-
est recurrencies are one-phonon excitations and not two-
phonon excitations as in the harmonic oscillator model.

Spin-spin interactions depend on the SU(6) symmetry
of the baryon wave function. The symmetry term in (1)
acts only for octet and singlet baryons (which have a com-
ponent antisymmetric w.r.t. the exchange of two quarks)
with spin 1/2 (which also has a component antisymmetric
w.r.t. the exchange of two quarks). This latter compo-
nent is reduced by a factor 2 in wave functions belonging
to SU(3) octets within the SU(6) 70-plet. Of course, the
overall wave functions in 56-plets and 70-plets have the
same symmetry. Loosely speaking, in baryons with odd
angular momentum, part of the antisymmetry is found
in the spacial wave function. The Λ resonances in the
SU(6) singlet have negative parity, too. But now, all
three quark pairs are antisymmetric in flavor w.r.t. ex-
change of two quarks. This gives the factor 3/2 enhance-
ment of the symmetry contribution. Decuplet baryons or
baryons with spin 3/2 do not have a wave function which
is antisymmetric w.r.t. the exchange of two quarks both
in spin and in flavor. They all fall onto the main Regge
trajectory.

We thus need an interaction which gives rise to a mass
shift proportional to the fraction of the wave function
which is antisymmetric w.r.t. the exchange of two quarks
both in spin and in flavor. This is a selection rule which
holds for instanton-induced interactions [7]. The suc-
cess of the eq. (1) provides therefore strong support that

instanton-induced interactions play a decisive role for
the spectrum of baryon resonances and are responsible
for the hyperfine splitting. Interactions ascribed to one-
gluon exchange can - at least to first order - be neglected.

The most model-discriminating masses are those of the
negative-parity ∆ resonances above 1.8 GeV. Capstick [8]
finds them at about 2.1 GeV, Löring et al. [9] at 2.2 GeV.
Bijker et al. [6] fit the data (with 11 parameters) and
find 1.9 GeV, in agreement with data. In Glozman et

al. [10] only the lower-mass states are calculated. The
mass formula (1) yields 1.95 GeV. The least established
∆3/2− resonance is predicted to dominate the reaction
γp→ ∆3/2− → ∆3/2+(1232)η where the latter decay is
in S-wave. Experiments along these lines are presently
performed at ELSA [11].

We have shown that the spectrum of baryon reso-
nances can be described successfully by a very simple
mass formula. The squared masses increase linearly with
the intrinsic orbital angular momentum between the con-
stituent quarks, radial excitations have the same spacings
as orbital excitations. Instanton-induced interactions re-
duce the masses whenever a component of the baryonic
wave function is sensitive to their action. Gluon exchange
leads to no significant contributions.

We wish to acknowledge discussions with D. Diakonov,
K. Goeke, B. Metsch, H. Petry, B. Schoch and Chr.
Weinheimer.
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